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BUCKLING OF MASONRY PIER UNDER ITS OWN
WEIGHT
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Abstnd-The stability of a column made of no-tension (or low tension) material and buckling under its
own weilht is analysed. Piers of rectangular cross section are considered and load-defte<:tion curves are
derived in closed form.

NOTATION
h width of pier
d depth of pier

t4 O.72-4.l.29ad/8
d, 1.I4d/8...(J.94
II, tan- IO.t4VtldVd,) +tan- I(O.l6lVt4)
m V(q/EI)
q weilht per unit heilht of column
r. distance of line of action of W. from x axis

l(y} L' L m(q» dq>, approximately

v distance of line of action of W. from centreline of column
x, IV coordinates

Xc length of cracked zone
y 2m(L - x)"2/3
A 2q19Eb

E/ bending rigidity of uncracked section
F function of d/8 and 2mVn'3 defined in eqn (13)
H function of d/8 defined in eqn (II)
L height or column

l-I/J<tp) Bessel function of order - 1/3 of the first kind
W. weilht of column above x
a parameter. measure of tensile strength defined in eqns (91) and (9b)
8 defte<:tion of top of column

(f" (fo... tensile strength, qUhd
(f....v tensile stress on convex face

I. INTRODUCTION
Analytical investigations of masonry columns usually assume that absence of a substantial
tensile strength of the material permits the cracking of the cross section of the column thus
decreasing the effective depth of that section. This leads to the concept of a column having a
varying moment of inertia, but the variation is not known, is not symmetric about the
centreline, and varies with the deflection.

If the column is made of low strength mortar its tensile strength will be nearly zero (a =1);
cracking will occur at the onset of tension, leading to a triangular stress distribution in the
cracked zone (Fig. 2). If the column possesses a small amount of tensile strength (a = I), such
tension will build up at the convex face resulting in a trapezoidal stress distribution (Figs. 1and 2).
The same considerations apply at the base where the column is assumed to be fixed and
cracking may, or may not, occur.

Columns of this kind have attracted some interest in the past. Angervo[1], Chapman and
Slatford[2]. Yokel[3], Risager[4], and Frisch-Fay[S] have considered columns under one
concentrated axial force. Bo-Goeran Hellers[6], Sahlin[7], Yokel, Mathey and Dikkers[8], and
Frisch-Fay[9, 10] included transverse loading in addition to the axial load. It appears that the
only investigators to consider the effect of the self weight were Tesfaye and Broome[1 I]. Their
investigation assumed that all column sections are cracked and that the centroid of the buckled
column above x will lie on the centreline of the deflected shape; in reality. it will lie off the
centreline and towards the concave direction (Fig. I).
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Fig. J. Deflected shape of pier.
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Fig. 2. Possible stress distributions across the depth of the pier.

The objective of the present discussion is to consider the effect of the self weight on the
stability of a masonry column. Both cracked and uncracked zones wilJ be considered and the
centroid of the deflected column will be placed off centreline.
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2. FORMULATION OF THE PROBLEM
The weight of a rectangular column of dimensions d x b above x is W.. =q(L - x) and acts

at a distance r. from the x axis (Fig. I). As seen,

r.. =[L wdx/(L-x), and v= [L wdx/(L-x)-w,

where v is the distance of the line of action of W. from the deflected centreline of the column.
According to (5] the curvature of the cracked part of a rectangular column is governed by

the differential equation

(I)

For the purpose of establishing v =8(x) the buckled shape of an uncracked column will be
assumed. The slope of such a column buckling under its own weight is

(12]

where m =V(q/EI).
Then,

w = cfV(L - X)J-1/3[2m(L - x)lI2I3J dx + D.

With the substitution y =2m(L - X)3/2 and satisfying the boundary conditions wl,.o =8, and
WbmL312/3 = 0,
we evaluate C and D to get

(2)

because 2mL312/3 =1.87 when buckling occurs.
The integral U l-lI3(rp)drp has been tabulated in[l3] whence the denominator in eqn (2) is

1.52. Approximation of U l-1/3(rp)drp between Osy s2.1 by a seventh order parabola changes
eqn (2) into

w =8[1-0.658/(y)]

where

(3)

v in eqn (l) can now be evaluated from

= _ =~(-!I.L_ 0.658J1' I(y)dx -1 +06S8t( )]
v rJt W a L-x L(I-x/L) . y.

Remembering that y =2mLlI2(1_ xlL)3/2/3.v can now be reduced to the form

v/8:: f(l- xlL).

The following numerical values are obtained from eqn (6) in the interval OsxlLs 1,

(5)

(6)

x/L
v/8

o
0.3894

0.2
0.4255

0.4
0.3802

0.6
0.2823

0.8
0.1500

1.0
o

For ease of solving eqn (1) these values of v/8 will be approximated by a best fitting second
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order parabola based on least squares,
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(7)

3. DERIVATION OF THE LOAD·DEFLECTION RELATIONSHIP
Defining A;:: 2q19Eb, substitution of eqn (7) into eqn (1), integration of eqn (I), and

satisfying of the boundary condition dwldxlIeo;:: 0 leads to

1 dw L2[ O.98xIL +dIS - 0.96 dIS - 0.96
A dx;:: S2 0.57Ix2IL2-0.16x1L+ J/2d/S-OA- J/2dJa-OA

+0: [tan-'e·14X{7d~O.16)+tan-,(t~)]]/ds (8)

where ds ;:: 1.14dlS - 0.94 and SId s 1.21. Equation (8) is the slope of the cracked part of the
column.

The length of the cracked zone is XC' This zone extends from v ;:: adl6, a being a measure of
the tensile strength O't of the material. Equating this value of v with the r.h.s. of eqn (7) yields

XcIL;:: 0.14 + v'(0.72 - 0.29adIS)

for SId ~ O.405a. The parameter a is defined as

in particular a;:: I, when 0'/ ;:: 0,

a> 1, when 100ti >0.
Since WIC ;:: q(L-xc), a must satisfy

a=l+ ~~
0.86 - V(O.72 - 0"'"".29"'""'a"""dl"""'S)

0'0.6V ;:: qUbd.

(9)

(9a)

(9b)

We note here that xciL has two solutions. The solution of XcIL with tbe negative square root is
valid only for SId s0.414a and indicates that in the restricted interval 0.414a ~ SId ~ 0.405a
the column is uncracked for a certain length above the base; above this zone is a cracked part
of non-dimensional length 2v'(0.72-0.29ad/S), with an uncracked zone at the top of the pier.
Because of the very small range of values of aId for which this can happen the first solution of
XcIL as shown in eqn (9) will only be considered here.

The slope of the uncracked zone is

dwldx =v'Lv'(1-xIL)C~_113[2m(L-x)3/2/3l (10) [12]

C2 is found by realizing that at v =ad/6 the slopes in the cracked and uncracked parts are
identical. Thus, equating eqns (8) and (9) when v =ad/6 we find the slope within the uncracked
zone as

where dc =O.72-0.29adIS

s Sv'
I - 0.82 -d +0.98 -d de dI ~ 0 96 196

H d/
u- • . d

( 8)= 1I2-a/6 l/2d/a-O.4+n t
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I an '1d, an Vii;,'
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The deflection of the cracked part can be obtained by integrating eqn (8). This leads to

=A L3 [2dIS-I.92+I.96XIL t _1(1.I4xIL-O.l6)
w S2d, v'd, an v'd,

dIS -0.96 x 1.96 x _I (0.16) I d,] c
-l/2dIS-O.4L+v'd,L tan v'd, +0.86 n2.28 + 3·

The deflection of the uncracked zone can be found by integrating eqn (II) and from this,

where

Recalling that y = 2mL312(1- xIL)31213 eqn (13) reduces to

Fw=S--t(y)
mv'L

(12)

(13)

(14)

since wl;:~ = S, and t =UL I13(lp) vanishes at y = O. The function t(y) has been defined in
eqn (4).

The undetermined constant C3 in eqn (12) can be evaluated from the requirement that the
deflection at v = ad/6 is the same in the cracked and uncracked zones. This changes eqn (12)
into

F
w= 8- mv'L t[2mL312(O.86-v'de)31213]

+A L3 [2d/8+ l.96x1L-l.92 t _1(1.l4xIL-O.l6)
82d, v'd, an v'd,

_ d/8-0.96 ( IL-O 14--'d)+ 1.96x1L-0.274-1.96v'de t _1(0.16)
1/2d/8-0.4 x . v C v'd, an v'd,

+ 1.645 - 2d/8 - 1.96v'de t -I (1.l4v'de)]
v'ds an v'd, . (15)

Equation (15) is the deflection of the cracked part of the column. The load-deftection relation
ship, mL312 v. d/8 is found from eqn (15) by setting w/x_o = O. We note here that

F 20 L2 1 1 ~
mv'L = 9Eb8! mv'L x (other terms) =54 B2 v'(qlEI)L312 x (other terms)

and that Al}182=~qL3/5482EI. Thus. from eqn (15),

+1.( L312\2 ~ 1.645 - 2d/8 - 1.96v'de d d/8 - 0.96 to 14+• '.I) =°
54 m . J 82ds v'ds t+l/2d/8-0.4'· VWc •

(16)
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Fig. 3. Stability limits in term of 6/d and qL)EI for a =1.0, 1.25, 1.5, 1.75, Ind 2.0. All branches begin at the
common horizontal line qL)/EI = 7.84, continue vertically at 6/d = 0.405a, whence the five branches

gradually merge and end at 6/d = 1.21.

Equation (16) contains qL31EI implicitly for 0.405a:S 8/d:s 1.21. Figure 3 shows the relation
ship qL31EI v. 8/d according to eqn (16). Five branches, corresponding to values of the strength
parameter a =I, 1.25, 1.5, 1.75,2.0, respectively, are plotted.

4. CONCLUSIONS
The graph in Fig. 3 and the underlying analysis show that all columns, including those with a

reasonable tensile strength, lose their stability if the ratio 81d ~ 1.21. The graph also shows that
below (8Id)min =0.405a there is no difference between a conventional column and a pier of a
material with zero, or near zero, tensile strength. At the critical deflection 8/d =0.405a the stability
limit of a no-tension material column (qL31EI = 7.79) is only about 1%below that of aconventional
column (qL3IEI = 7.84).
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