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BUCKLING OF MASONRY PIER UNDER ITS OWN
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Abstract—The stability of a column made of no-tension (or low tension) material and buckling under its
own weight is analysed. Piers of rectangular cross section are considered and load-deflection curves are
derived in closed form.

NOTATION
width of pier
depth of pier
0.72-0.29ad/5
1.144/6-0.94
tan~{LI4V IV dy) +tan~0.16/V d;)
V(qIED)
weight per unit height of column
distance of line of action of W, from x axis

f’ J_inle) do, approximately
o

distance of line of action of W, from centreline of column
x,w coordinates
x. length of cracked zone
y 2m(L-xP*3
A 2499Eb
EI bending rigidity of uncracked section
F function of d/5 and 2mL?|3 defined in eqn (13)
H function of d/$ defined in eqn (11)
L height of column
Jinle) Bessel function of order - 1/3 of the first kind
W, weight of column above x
a parameter, measure of tensile strength defined in eqas (9a) and (9b)
& deflection of top of column
0, #o0  tensile strength, qL/bd
Oeone  tensile stress on convex face

- ’E ST IRERn o

. . .. 1. INTRODUCTION .
Analytical investigations of masonry columns usually assume that absence of a substantial

tensile strength of the material permits the cracking of the cross section of the column thus
decreasing the effective depth of that section. This leads to the concept of a column having a
varying moment of inertia, but the variation is not known, is not symmetric about the
centreline, and varies with the deflection.

Hf the column is made of low strength mortar its tensile strength will be nearly zero (a = 1);
cracking will occur at the onset of tension, leading to a triangular stress distribution in the
cracked zone (Fig. 2). If the column possesses a small amount of tensile strength (a = 1), such
tension will build up at the convex face resulting in a trapezoidal stress distribution (Figs. 1 and 2).
The same considerations apply at the base where the column is assumed to be fixed and
cracking may, or may not, occur.

Columns of this kind have attracted some interest in the past. Angervofl], Chapman and
Slatford[2], Yokel[3], Risager[4], and Frisch-Fay[5] have considered columns under one
concentrated axial force. Bo-Goeran Hellers{6], Sahlin{[7], Yokel, Mathey and Dikkers[8], and
Frisch-Fay[9, 10] included transverse loading in addition to the axial load. It appears that the
only investigators to consider the effect of the self weight were Tesfaye and Broome[11). Their
investigation assumed that all column sections are cracked and that the centroid of the buckled
column above x will lie on the centreline of the deflected shape; in reality, it will lie off the
centreline and towards the concave direction (Fig. 1).
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Fig. 1. Deflected shape of pjer.
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Fig. 2. Possibie stress distributions across the depth of the pier.

The objective of the present discussion is to consider the effect of the self weight on the
stability of a masonry column. Both cracked and uncracked zones will be considered and the
centroid of the deflected column will be placed off centreline.
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2. FORMULATION OF THE PROBLEM
The weight of a rectangular column of dimensions d x b above x is W, = g{L ~x) and acts
at a distance r, from the x axis (Fig. 1). As seen,

L L
r,=[ w dx/(L ~ x), and v=J' wdx/(L—~x)=-w,

X X
where v is the distance of the line of action of W, from the deflected centreline of the column.

According to [5] the curvature of the cracked part of a rectangular column is governed by
the differential equation

d*wldx? - 2q(L ~ x){9Eb(1/2d - v)* = 0. m

For the purpose of establishing v = 8(x) the buckled shape of an uncracked column will be
assumed. The slope of such a column buckling under its own weight is

dwldx = CV(L - x)J_1512m(L - x)**13) [12]

where m = V/(q/EI).
Then,

w=C f VAL = x)ypl2m(L~ xP[3) dx + D,
With the substitution y =2m(L —x)*? and satisfying the boundary conditions w|,.c=8, and

Wameiy =0,
we evaluate C and D to get

wel1-[ Lunterde/ [ Lnterde ] @

because 2mL*?/3 = 1,87 when buckling occurs.

The integral f¢ J.ia(¢) de has been tabulated in[13] whence the denominator in eqn (2) is
1.52. Approximation of f¢ J.in(p) de between 0 =<y <2.1 by a seventh order parabola changes
eqn (2) into

w = 8[1 - 0.658t(y)} (3
where
t1(y) =0.1263y” — 1.075y% + 3.7848y° — 7.1212y* + 7.7595y* - 5.3379y% + 3.1344y . @
v in eqn (1) can now be evaluated from

[k 068fFHy)dx
v=remw=g L - SR - st ©

Remembering that y = 2mL>*(1 - x/L)*/3,v can now be reduced to the form
vlé = f(1-x/L). ©
The following numerical values are obtained from eqn (6) in the interval 0 <x/L <1,

x/L 0 0.2 04 0.6 0.8 1.0
v/é 03894 04255 03802 02823  0.1500 0

For ease of solving eqn (1) these values of v/§ will be approximated by a best fitting second
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order parabola based on least squares,
v=238(-0.571x*L*+0.16x/L +0.4) )
3. DERIVATION OF THE LOAD-DEFLECTION RELATIONSHIP

Defining A =2g/9Eb, substitution of eqn (7) into eqn (1), integration of egn (1), and
satisfying of the boundary condition dw/dx]|;., =0 leads to

ldw_Lz[ 0.98x/L + d|8—0.96 d/& - 0.96
0.571x*-0.16x/L+12d/6-0.4  12d/6-0.4

+7§£ [ tam_,(1.14.\c/1.d:o.115) +tan“'<0 16)] } / 4

Adx &
where d; = 1.14d/86 ~0.94 and 8/d <1.21. Equation (8) is the slope of the cracked part of the
column.

The length of the cracked zone is x,. This zone extends from v = ad/6, a being a measure of
the tensile strength o, of the material. Equating this value of v with the r.h.s. of eqn (7) yields

xJL=0.14+V(0.72~0.29ad/8) )

for 8/d = 0.405a. The parameter « is defined as

I

= b
in particular @ = 1, when 0, =0, (%a)
a>1, when oy >0.

Since W,. = g(L - x.), a must satisfy

+ ’ UII Uo.avl
0.86 —V/(0.72- 0.29d/5)

a=]

(9b)
0000 = qL/ bd.

We note here that x/L has two solutions. The solution of x./L with the negative square root is
valid only for §/d £0.414a and indicates that in the restricted interval 0.414a = §/d = 0.405«
the column is uncracked for a certain length above the base; above this zone is a cracked part
of non-dimensional length 2V/(0.72—0.29ad/8), with an uncracked zone at the top of the pier.
Because of the very small range of values of 8/d for which this can happen the first solution of
xL as shown in eqn (9) will only be considered here.

The slope of the uncracked zone is

dwldx = VLV(1 - x/L)CyJ_ypl2m(L - x)**/3) (10) [12)

C; is found by realizing that at v = ad/6 the slopes in the cracked and uncracked parts are
identical. Thus, equating eqgns (8) and (9) when v = adf6 we find the slope within the uncracked
zone as

Joipl2mL*2(1 - x| LY”/3]

dwldx = A3 TEmL0.36- vV Rose-vaym 1D

H(dla)v'(l x/L) x

d,,
where d. =0.72-0.29ad/§

) o
]—08224"098'&'\/(1, di5—0.96 1.96

2= al6 ~1Rdis-04 ' V4, *

H(d|é)=
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and d, =tan "(l—l\—%d—)“"“-'(%)'

The deflection of the cracked part can be obtained by integrating eqn (8). This leads to

2d/5-1.92+1.96x/L ~ _ (1.14x/L -0.16

w=Asr d,[ Vds tan <————\/ds )
d/6-0.9 x 19 x 0.16 ds] 2
“1Rdls - 04L+\/d6 t (\/d>+086l"223 +Gs. (12)

The deflection of the uncracked zone can be found by integrating eqn (11) and from this,

w = F(d/8) f V(1 = x/L)J_15[2mL**(1 = x/LY?/3) dx + C, 13)
where

gl H
8%d; (0.86 — \/d.)T_,s2mL0.86 - \/d.) 213)°

Recalling that y = 2mL¥*(1 - x/L)*?/3 eqn (13) reduces to

PR

since w|3=§ =4, and t = ¢ J_,5(p) vanishes at y =0. The function t(y) has been defined in

eqn (4).

The undetermined constant C; in eqn (12) can be evaluated from the requirement that the
deflection at v = ad/6 is the same in the cracked and uncracked zones. This changes egn (12)
into

w= a-—vz:[zmvﬂ(oss -vd.)?3]

2d/6+1.96x/L—-192 _./1.14x/L-0.16
*A?I[ Vs tan”( Vi)

_ _dl5-096 196x/L - 0.274 - 1.96V/d; -.<015)
12d/5-0.4 Vds tan"\4;

1645 2d\l}$d:196\/dct -1 (l l\t\/dt)]‘

Equation (15) is the deflection of the cracked part of the column. The load-deflection relation-
ship, mL>? v. d/é is found from eqn (15) by setting w|,.o =0. We note here that

(x/IL-0.14—~/d;)+

(15)

F ZJ_L2

VL -9E5 3 \/ 7% (other terms) = 5 i \/(q/ EIL2 X (other terms)

and that AL%/82 = d2qL3/546EI. Thus, from eqn (15),

s L nd Y2(0.86 ~ /d )" A
a5 g, mL 08~V A ) e B DO 8= A

d’ 1.645 ~2d/6 — 1.96V/d, , . dI5—0.96
( L #4 Vi, %4+ IRds-04

0.14++/d;)=0. (16)
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Fig. 3. Stability limits in term of &/d and gL’EI for a = 1.0, 1.25, 1.5, 1.75, ind 2.0. All branches begin at the
common horizontal line qL*/EI =7.84, continue vertically at 8/d =0.405a, whence the five branches
gradually merge and end at §/d = 1.21.

Equation (16) contains gL EI implicitly for 0.405« < 8/d < 1.21. Figure 3 shows the relation-
ship gL3/EI v. 8/d according to eqn (16). Five branches, corresponding to values of the strength
parameter a = 1, 1.25, 1.5, 1.75, 2.0, respectively, are plotted.

4, CONCLUSIONS
The graph in Fig. 3 and the underlying analysis show that all columns, including those with a
reasonable tensile strength, lose their stability if the ratio §/d = 1.21. The graph also shows that
below (8/d)min =0.405a there is no difference between a conventional column and a pier of a
material with zero, or near zero, tensile strength. At the critical deflection 8/d = 0.405« the stability
limit of a no-tension material column (gL*/ EI = 7.79) is only about 1% below that of a conventional
column (qL*/EI = 7.84).
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